skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sistla, A_Prasad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many synthesis and verification problems can be reduced to determining the truth of formulas over the real numbers. These formulas often involve constraints with integrals in them. To this end, we extend the framework of δ-decision procedures with techniques for handling integrals of user-specified real functions. We implement this decision procedure in the tool ∫dReal, which is built on top of dReal. We evaluate ∫dReal on a suite of problems that include formulas verifying the fairness of algorithms and the privacy and the utility of privacy mechanisms and formulas that synthesize parameters for the desired utility of privacy mechanisms. The performance of the tool in these experiments demonstrates the effectiveness of ∫dReal. 
    more » « less
  2. Differential privacy is a mathematical framework for developing statistical computations with provable guarantees of privacy and accuracy. In contrast to the privacy component of differential privacy, which has a clear mathematical and intuitive meaning, the accuracy component of differential privacy does not have a generally accepted definition; accuracy claims of differential privacy algorithms vary from algorithm to algorithm and are not instantiations of a general definition. We identify program discontinuity as a common theme in existingad hocdefinitions and introduce an alternative notion of accuracy parametrized by, what we call, — the of an inputxw.r.t.  a deterministic computationfand a distanced, is the minimal distanced(x,y) over allysuch thatf(y)≠f(x). We show that our notion of accuracy subsumes the definition used in theoretical computer science, and captures known accuracy claims for differential privacy algorithms. In fact, our general notion of accuracy helps us prove better claims in some cases. Next, we study the decidability of accuracy. We first show that accuracy is in general undecidable. Then, we define a non-trivial class of probabilistic computations for which accuracy is decidable (unconditionally, or assuming Schanuel’s conjecture). We implement our decision procedure and experimentally evaluate the effectiveness of our approach for generating proofs or counterexamples of accuracy for common algorithms from the literature. 
    more » « less